Advanced Tools and Methodologies for the Multiphysics Modeling and Simulation of RF MEMS Switches

Aurel-Sorin Lup

Politehnica University of Bucharest

sorin@lm.pub.ro

Content

- 1. Introduction
- 2. Coupled MEC+ES Modeling
- 3. RF Modeling
- 4. Reduced-order model MEC+ES+RF
- 5. Conclusions

Up – down => multiphysics phenomena (coupled mechanical, electrical, fluid interaction)

1) Introduction

Compact models (circuit netlists)

Multiphysics => ?

RF =>

Easy simulation and design (if parameterized).

Goal: to obtain a reduced-order model to find:

- Multiphysics: V_{pi} , V_{po} , switch time
- RF: S parameters

COST MORNET Workshop, March 19-20, 2015, Bucharest, Romania

a) Problem Formulation

The most simple model of a switch

movement equation is based on Newton's law

$$m\frac{\mathrm{d}^2 z}{\mathrm{d}t^2} + b\frac{\mathrm{d}z}{\mathrm{d}t} + kz = F_{\mathrm{ES}}(z, V_0),$$

Static simulation of the model above for increasing values of the actuation voltage, reveals that at $V = V_{pi}$ a numerical instability occurs.

Given: a switch (geometry, materials) with an arbitrary geometry

Find:

- 1) An algorithm to extract an equivalent k, k_s so that V_{pi} is recovered
- 2) A macromodel described as a SPICE netlist that implements the solving of the nonlinear equation in z

How to proceed: by using results obtained from a multiphysics static simulations, for increasing values of the actuation voltage.

Question to be answered: what is the accuracy (in V_{pi}) of such a coarse 1D reduced order model?

b) Geometry Modeling and Materials

Parameter	Value	Significance
	(μm)	
L _m	910	Length of the membrane
W _m	200	Width of the membrane
H _m	2	Height of the membrane
H _{cpw}	0.6	Height of the signal line
H _{gap}	2.5	Height of the gap
H _{pad}	0.45	Height of the electrode
W _{cpw1}	100	Width of the signal line
W _{pad}	200	Width of the electrode
W _p	160	Width of the membrane support
D _{pad1}	30	Distance between the CPW and electrode
T _d	0.1	Height of the dielectric

10/21

e) Extraction of elasticity coefficient

From static simulations \Rightarrow (V_0 , z, W_e)

 $F_{\rm ES} = \frac{\partial W_{\rm ES}}{\partial g}$, were $g = g_0 - z \rightarrow$ generalized coordinate

$$W_{\rm ES}(z, V_0) = C(z) \frac{V_0^2}{2}$$
$$C(z) = \frac{1}{\alpha z + \beta} \iff 1^{st} \, order \, LS \, for \, \frac{1}{C(z)}$$
$$F_{\rm ES}(z, V_0) = \frac{\alpha}{(\alpha z + \beta)^2} \frac{V_0^2}{2}$$

12/21

Best Method $3^{\rm rd}$ order least square approximation $\{z, F_{\rm ES}\} \rightarrow \{k, k_{\rm s}\}$

COST MORNET Workshop, March 19-20, 2015, Bucharest, Romania

3) RF Modeling

Given: a switch (geometry, materials) with an arbitrary geometry

Find:

- 1) S parameters
- 2) Lump parameters for the 2 stable states (Up-Down)

Numerical Model -> FIT (*chamy*)

Relative errors for **S** parameters

4) Reduced-order model MEC+ES+RF

.model MyLL LTRA(len=300e-6 R=6.711595241681713e+002 L=2.825059038922490e-007 C=2.063713228210645e-010) .param Cfix = 2.140112e-002

•The extracted V_{pi} and of the z(V) dependence are very accurate with respect to the numerical model used for extraction (less than 1 % for V_{pi}).

•The Reduced order model MEC+ES+RF reconstruct the S parameters with a relative error less than 3%.

•The accuracy with respect to the reality depends on the quality of the numerical model.

•Parametric studies have been made in preparation for optimization

- •Construction of 3D parametric models in progress
- •Next Step: fluid interaction

Thank you for your attention

COST MORNET Workshop, March 19-20, 2015, Bucharest, Romania

21/21