

Accelerated Integral Equation Methods for the Comprehensive Electromagnetic Analysis of MRI Systems

Jorge Fernandez Villena

MORNET, Bucharest, 20 March 2015

www.rle.mit.edu/cpg

I'lii

pTx project consortium

Wald Group @ Martinos Center Larry Wald Bastien Guerin

MRI group @ RLE, MIT Elfar Adalsteinsson Filiz Yetisir

MIT+Madrid initiative

Yigitcan Eryaman Joaquin Herraiz Emanuele Schiavi Adrian Martin

SIEMENS

Siemens Group @ Erlangen Michael Hamm

CPG @ RLE, MIT

Jacob White Luca Daniel Thanos Polimeridis Zohaib Mahmood Amit Hochman Jorge Fernández Villena

Magnetic Resonance Imaging

Principles of MRI

l'liī

- External large coils generate main uniform B field
 - align protons in the direction of the scan
 - protons spinning at Larmor frequency
 - multiple of the main field strength

Principles of MRI

• RF transmit (Tx) coil

- applies a short RF signal at the Larmor frequency
- perturbes (tilts) the alignment of the spinning

Principles of MRI

• RF receiving (Rx) coils

- protons return to original magnetization alignment
- generate small flux changes
 - voltage change in receiving (Rx) coils: signal to be processed
- time to return depends on time constants
 - related to tissue properties
 - contrast in the image

Parallel Transmission

• As we move into high field (higher frequency) scanners

Inhomogeneities affect image quality

• Move from single channel

1 channel

Move from single channel to multiple independent channels

pTx technology

Tx

0.1

• New MRI fashion (images courtesy of Wei Zhao, MGH)

0.05 **Rx 128ch** -0.05 prototype -0.15 -0.2 -0.25 0.2 -0.1

- and artistic trends \blacklozenge
 - 8ch pTx @7T, MLS (images courtesy of Kawin Setsompop, MGH)

Downside of pTx

SAR must be monitored and limited

- Specific Absorption Rate (SAR)
 - time average energy deposed in patient

$$SAR(\mathbf{r}) = \frac{\sigma(\mathbf{r})}{2\rho(\mathbf{r})} \frac{1}{T} \int_{0}^{T} \left\| \mathbf{E}_{tot}(t) \right\|^{2} dt$$

tissue properties detailed E fields

• How to reduce SAR?

• How to reduce SAR?

$$SAR(\mathbf{r}) = \frac{\sigma(\mathbf{r})}{2\rho(\mathbf{r})} \frac{1}{T} \int_{0}^{T} \|\mathbf{E}_{tot}(t)\|^{2} dt$$

$$\mathbf{E}_{tot}(\mathbf{r}, t) = \sum_{c=1}^{C} \mathbf{b}_{c}(t) \mathbf{E}_{c}(\mathbf{r})$$

RF pulse at channel c at time t E map of channel c

Play with RF pulses to reduce SAR!

$$SAR(\mathbf{r}) = \frac{1}{N} \sum_{t=1}^{N} \mathbf{b}^{H}(t) \mathbf{Q}(\mathbf{r}) \mathbf{b}(t)$$

• How to reduce SAR?

We need the EM field maps per channel

Need EM distribution in realistic human body models

[1] M. Kozlov et al., "Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation", JMR 2009.

We need the EM field maps per channel

Need EM distribution in realistic human body models

[2] B. Guerin et al., "Local SAR, global SAR, transmitter power, and excitation accuracy trade-offs in low flip-angle parallel transmit pulse design", MRM 2013.

• Traditional EM analysis tools

simply too slow and not flexible!

Traditional solvers

- EM analysis tools: Surface integral equation methods
 - Approximate: body model by homogeneous phantom
 - Discretize: only body and conductors surface
 - model conformal surfaces
 - no air discretization
 - smaller systems
 - fast (10min/simulation)
 - OK for coil S-parameters
 - approximate EM fields
 - useless for SAR calculations

image courtesy of S. Wang, PMB 2008

Traditional solvers

- EM analysis tools: Finite Difference Time Domain / Finite Element
 - Volume discretization: inhomogeneous models
 - Discretize: whole domain, plus boundary conditions
 - refinement for conformal surfaces
 - air discretization
 - large (sparse) systems
 - convergence issues
 - Slow (hours/simulation)
 - bad coil S-parameters approx. (FDTD)
 - good for SAR calculations

image courtesy of S. Wang, PMB 2008

• Traditional EM analysis tools: acceleration? sure!

... for \$97 million

Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer | 18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU) | CPUs/GPUs working together – GPU accelerates | 20+ Petaflops

Image: Cray Titan supercomputer at Oak Ridge National Laboratory

Plii

CPG role in pTx project

- Goal: accelerate the EM analysis flow
 - Integral equation methods & sophisticated numerical methods
 - Leverage problem knowledge

Where?

1 desktop server

- MATLAB 2013 running on Windows R2008
- two Xeon E2685W (16 cores total) @3.1GHz
- a K20X GPU Nvidia (6GB mem.)

Goals

Patient Specific MRI

MRI coil design

Ultimate SNR/SAR Goals

Patient Specific MRI

MRI coil design

Ultimate SNR/SAR

Robust Optimisation

Public domain

• Open source MATLAB code

beta-version coming soon

Prototype tools with focus on

- Fast solvers for complex inhomogeneous media
- Combination with surface-based coil models
- Domain oriented iterative methods
- Acceleration: pre-computation of fixed parts

In this presentation...

• Best out of 500 coil designs?

• Best out of 500 coil designs?

for inhomogeneous realistic human body models [1]

[1] A. Christ et al., "The Virtual Family - development of anatomical CAD models of two adults and two children for dosimetric simulations," PMB 2010.

Impact coil design

14**1**17

• Best out of 500 coil designs? Need full EM analysis of each design

• Best out of 500 coil designs? Need full EM analysis of each design

• Best out of 500 coil designs? Need full EM analysis of each design

|'|iii

How?

- MRI customized simulation tools
 - based on Integral Equation methods
 - and pre-computed Magnetic Resonance Green functions

Magnetic Resonance specific Integral Equation suite

• Fast MR-specific Volume Integral Equation (VIE) solver

[4] Polimeridis et al., "Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects", JCP 2014
Challenges

• Electric properties at 7T (298MHz)

 $\operatorname{Re}\{\epsilon_r\}$

 $\operatorname{Im}\{\epsilon_r\}$

IE-based

- frequency domain (MRI is single frequency analysis)
- reduces dimensionality and satisfy radiation conditions
- easy to "couple" with other solvers
- New current-based formulation (JVIE)
 - natural formulation for MRI applications
- Machine precision integration
 - DEMCEM and DIRECTFN packages (http://web.mit.edu/thanos_p/www/)
- FFT-based fast solver
 - exploit voxel based data from MRI
- Well conditioned system fast convergence
 - even for high contrast

VIE solver: formulation

• Formulas for total fields

$$\mathbf{e} = \mathbf{e}^{\text{inc}} + \mathbf{e}^{\text{sca}} = \mathbf{e}^{\text{inc}} + \frac{1}{c_{\epsilon}}\mathcal{L}\mathbf{j} - \mathcal{K}\mathbf{m}$$
$$\mathbf{h} = \mathbf{h}^{\text{inc}} + \mathbf{h}^{\text{sca}} = \mathbf{h}^{\text{inc}} + \frac{1}{c_{\mu}}\mathcal{L}\mathbf{m} + \mathcal{K}\mathbf{j}$$

$$\mathbf{j}(\mathbf{r}) \triangleq c_{\epsilon} \chi_{\epsilon}(\mathbf{r}) \mathbf{e}(\mathbf{r})$$
$$c_{\epsilon} = j\omega\epsilon_{0}$$
$$\chi_{\epsilon} = \epsilon_{r}(\mathbf{r}) - 1$$

 $\mathcal{L}\mathbf{u} \triangleq (k_0^2 + \nabla \nabla \cdot) \mathcal{S}(\mathbf{u}; \Omega)(\mathbf{r})$ $\mathcal{K}\mathbf{u} \triangleq \nabla \times \mathcal{S}(\mathbf{u}; \Omega)(\mathbf{r})$

$$\mathcal{S}\left(\mathbf{u};\Omega\right)(\mathbf{r}) \triangleq \int_{\Omega} G(\mathbf{R})\mathbf{u}(\mathbf{r}')d\mathbf{r}'$$

VIE solver: formulation

- Formulas for total fields
 - non-magnetic material

$$\mathbf{e} = \mathbf{e}^{\text{inc}} + \mathbf{e}^{\text{sca}} = \mathbf{e}^{\text{inc}} + \frac{1}{c_{\epsilon}}\mathcal{L}\mathbf{j} - \mathcal{K}\mathbf{n}$$
$$\mathbf{h} = \mathbf{h}^{\text{inc}} + \mathbf{h}^{\text{sca}} = \mathbf{h}^{\text{inc}} + \frac{1}{c_{\mu}}\mathbf{m} + \mathcal{K}\mathbf{j}$$

$$\mathbf{j}(\mathbf{r}) \triangleq c_{\epsilon} \chi_{\epsilon}(\mathbf{r}) \mathbf{e}(\mathbf{r})$$
$$c_{\epsilon} = j\omega\epsilon_{0}$$
$$\chi_{\epsilon} = \epsilon_{r}(\mathbf{r}) - 1$$

 $\mathcal{L}\mathbf{u} \triangleq (k_0^2 + \nabla \nabla \cdot) \mathcal{S}(\mathbf{u}; \Omega)(\mathbf{r})$ $\mathcal{K}\mathbf{u} \triangleq \nabla \times \mathcal{S}(\mathbf{u}; \Omega)(\mathbf{r})$

$$\mathcal{S}\left(\mathbf{u};\Omega\right)(\mathbf{r}) \triangleq \int_{\Omega} G(\mathbf{R})\mathbf{u}(\mathbf{r}')d\mathbf{r}'$$

VIE solver: formulation

- Select a current based formulation
 - behaves well for high contrast

```
\lim_{\epsilon_r \to \infty} \text{JVIE}:
```

$$(\mathcal{I} - \mathcal{N})\mathbf{j} = c_{\epsilon} \mathbf{e}^{\mathrm{inc}}$$

- Two possible formulations
 - Second one is naturally pre-conditioned

 $\begin{aligned} \mathbf{J}\mathbf{V}\mathbf{I}\mathbf{E}_{\mathbf{I}} : & \left(\mathcal{M}_{\epsilon_{r}} - \mathcal{M}_{\chi_{\epsilon}}\mathcal{N}\right)\mathbf{j} = c_{\epsilon}\mathcal{M}_{\chi_{\epsilon}} \,\mathbf{e}^{\mathrm{inc}} \\ \mathbf{J}\mathbf{V}\mathbf{I}\mathbf{E}_{\mathbf{II}} : & \left(\mathcal{I} - \mathcal{M}_{\tau_{\epsilon}}\mathcal{N}\right)\mathbf{j} = c_{\epsilon}\mathcal{M}_{\tau_{\epsilon}} \,\mathbf{e}^{\mathrm{inc}} \end{aligned}$

$$\tau_{\epsilon} = \chi_{\epsilon} / \epsilon_r$$

VIE solver: numerics

Voxel as support

- natural discretization of MRI applications
- transform volume integrals into surface
- allows to apply FFT based approaches

VIE solver: convergence

• Extremely challenging case

 $1 \le \operatorname{Re}\{\epsilon_r\} \le 80$

Cube kL = 1

 $0 \le |\mathrm{Im}\{\epsilon_r\}| \le 140$

VIE solver: performance

• Realistic human body model at 7T

VIE solver: performance

• Realistic human body model at 7T

		Contraction of the second second		Contraction of the second					
		OFFLINE	GMRES	$\begin{array}{c} \text{GMRES} \\ (40) \end{array}$	$\begin{array}{c} \text{GMRES} \\ (40,5) \end{array}$	BICG	BICGSTAB	QMR	TFQMR
	Serial	20 s	15 s	$15 \mathrm{s}$	13 s	28 s	16 s	23 s	17s
$\parallel 5$ mm	Parallel	$5 \mathrm{s}$	$7 \mathrm{s}$	5 s (3 s)	$5 \mathrm{s}$	4 s	3 s	4 s	3 s
	Speed-Up	$4\times$	$2.1 \times$	$3.0 \times (5 \times)$	2.6 imes	7.0×	5.3 imes	5.7 imes	5.6 imes
	Serial	$146 \mathrm{s}$	146 s	142 s	$125 \mathrm{~s}$	276 s	162 s	266 s	174 s
$\parallel 2.5 \mathrm{mm}$	Parallel	$27~{ m s}$	$65 \mathrm{s}$	48 s (23 s)	$42 \mathrm{\ s}$	40 s	$25 \mathrm{s}$	40 s	32 s
	Speed-Up	5.4 imes	2.2 imes	$2.9 \times (6.1 \times)$	2.9 imes	6.9 imes	6.4 imes	6.6 imes	5.4 imes
					,				

3,000,000 unknowns!

Integral Equation solvers for MRI coil analysis

• Green function [2]

- gives fundamental solution of the problem at any point
- satisfies (by definition) radiation conditions (no ABC or PML)

Green function

- gives fundamental solution of the problem at any point
- satisfies (by definition) radiation conditions (no ABC or PML)
- At the core of Integral Equation methods

|'|iī

- Two homogeneous coils
 - free space

- Discretize the conductors (not the air)
 - connection segments define a port
 - constant current at each element

- Discretize the conductors (not the air)
 - connection segments define a port
 - constant current at each element
 - each current radiates a field

- Discretize the conductors (not the air)
 - connection segments define a port
 - constant current at each element
 - each current radiates a field
 - field at each element:
 - contribution from all currents

$$\dots + G(k,m)i_m + G(k,k)i_k + G(k,n)i_n + \dots = E_k^{\text{inc}}$$

$$i_k \quad v_k = f(E_k^{\text{inc}})$$

$$i_m \quad V_1$$

- relates the variables (currents)
- external excitations (port voltage)

Now...if there is a scatterer?

• There is a perturbation induced by the body

|'|iī

• There is a perturbation induced by the body

55

IIIii

• There is a perturbation induced by the body

|'|iī

• There is a perturbation induced by the body

- There is a perturbation induced by the body
 - total contribution of elements is direct+scattered

- There is a perturbation induced by the body
 - total contribution of elements is direct+scattered
 - assemble total system

$$(Z^{cc} - Z^{cb}(Z^{bb})^{-1}Z^{cb}) I^c = V^c$$

Couple surface and volume solvers

• SIE for coils and VIE for body model

[3] Rao et al., "Electromagnetic scattering by surfaces of arbitrary shape", TAP 1982
[4] Polimeridis et al., "Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects", JCP 2014

Couple surface and volume solvers

l'liī

- SIE for coils and VIE for body model
 - Coupling is done via free-space Green function
 - Superposition + linearity: seamlessly combination

[3] Rao et al., "Electromagnetic scattering by surfaces of arbitrary shape", TAP 1982
[4] Polimeridis et al., "Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects", JCP 2014

+ Two level iterative solver $\left(Z^{cc}-Z^{cb}(Z^{bb})^{-1}Z^{cb}\right)I^c = V^c$

Guess
$$I^{c}$$

 $E^{inc} = Z^{bc}I^{c}$
Solve $Z^{bb}J^{b} = E^{inc}$ for J^{b}
 $x = Z^{cc}I^{c} - Z^{cb}J^{b}$
 $r = V^{c} - x$
 $||r|| < tol$
 \downarrow
return J^{b} I^{c}

Basis for the EM fields in realistic body models

- Free space Green function
 - fundamental solution of the problem at any point

- Magnetic Resonance Green function
 - fundamental solution of body scattering problem at any point

- Realistic human body model: too complex
 - How to get an analytical function?

- Magnetic Resonance Green function
 - fundamental solution of body scattering problem at any point

- Realistic human body model: too complex
 - Numerical Pre-computation!
 - Solution at any point due to any excitation

• How to explore all possibilities?

Mii

Surface enclosing the scatterer

Hyugens equivalent principle

• Fields from (combination of effect of) currents on the surface

Hyugens equivalent principle

• Fields from (incident fields due to) currents on the surface

Basis for the incident field

• Find a basis for the incident fields

Basis for the incident field

Incident field approximated by basis

Basis for the incident field

Pre-compute the VIE solution

Basis for the solution

• Pre-compute the VIE solution for each vector in basis

Basis for the solution

• Pre-compute the VIE solution for each vector in basis

Magnetic resonance Green functions

l'lii T

• Contribution of human body as set of matrix-vector products

Accelerated integral equation solver

Back to the combined integral equation solver

Accelerate the integral equation solver

l'liī

Model the body perturbation with MRGFs

l'liī

Model the body perturbation with MRGFs

Model the body perturbation with MRGFs

• approximate incident field by basis

l'liī

Model the body perturbation with MRGFs

- Model the body perturbation with MRGFs
 - instead of applying the VIE solver

- Model the body perturbation with MRGFs
 - apply the pre-computed solutions

Model the body perturbation with MRGFs

- Model the body perturbation with MRGFs
 - exploit reciprocity of Green functions on left side

- Model the body perturbation with MRGFs
 - apply further compression

- Model the body perturbation with MRGFs
 - to generate the perturbation matrix $N_c \times N_c$

- Model the body perturbation with MRGFs
 - avoids VIE solver
 - assemble the perturbation: a set of low-rank matrix-vector products

|||iī

- Still requires to form and project the coupling block
 - for every new coil

l'liī

- Still requires to form and project the coupling block
 - approximate the computation of the coefficients

• Still requires to form and project the coupling block

 α

- Still requires to form and project the coupling block
 - Discrete empirical interpolation method (DEIM) [6]

[6] Chaturantabut et al, "Nonlinear model reduction via discrete empirical interpolation," SIAM J. Sci. Comput. 2010.

- Still requires to form and project the coupling block
 - pre-compute the matrix X
 - only need to evaluate coupling at r points

$$\begin{aligned} X &= (PU)^{-1} \\ \widehat{Z^{bc}} &= P^T Z^{bc} \end{aligned}$$

 $q \times r \quad r \times N_c$

• Instead of evaluating the coupling in all positions and project

|4**1**17

- Instead of evaluating the coupling in all positions and project
 - evaluation in r points

|4**1**17

- Instead of evaluating the coupling in all positions and project
 - evaluation in r points

MRGFs accelerated IE solver flow

- Accelerated Integral Equation solver for MRI coils
 - Off-line phase

• On-line phase

- Accelerated Integral Equation solver for MRI coils
 - Off-line phase: MRGF pre-computation

• On-line phase

- Accelerated Integral Equation solver for MRI coils
 - Off-line phase: MRGF pre-computation

• On-line phase

reuse for as many coils as desired with fixed body model

- Accelerated Integral Equation solver for MRI coils
 - Off-line phase: MRGF pre-computation

• On-line phase: MRGF use

reuse for as many coils as desired with fixed body model

- Accelerated Integral Equation solver for MRI coils
 - Off-line phase: MRGF pre-computation

On-line phase: MRGF use

Detailed application on an realistic case

Pre-computation: equivalent model

l'liiT

• Magnetic Resonance Green Function: Pre-computation

DUKE 4mm @7T 266,019 Voxels

Pre-computation: leverage knowledge

- Magnetic Resonance Green Function: Pre-computation
 - Coil domain

Pre-computation: generate any possible excitation

- Magnetic Resonance Green Function: Pre-computation
 - Generate the all possible incident fields

Pre-computation: basis for incident field

- Magnetic Resonance Green Function: Pre-computation
 - Generate a compressed basis for the incident field

[5] Halko et al, "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions," SIAM Rev. 2011.

Pre-computation: solve scattering problem

- Magnetic Resonance Green Function: Pre-computation
 - Solve for each vector of the basis

[4] Polimeridis et al., "Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects", JCP 2014

Plii

Pre-computation: select interpolation points

- Magnetic Resonance Green Function: Pre-computation
 - Generate a reduced set of interpolation points

[6] Chaturantabut et al, "Nonlinear model reduction via discrete empirical interpolation," SIAM J. Sci. Comput. 2010.

Pre-computation: results

Magnetic Resonance Green Function

- Set of interpolation points in the body
- Some pre-computed matrices

- For 4mm DUKE 7T, head and torso
 - 1609 DEIM points (initially 266019 voxels)
 - 1442 basis vectors (from 4000 excitations on 189000 dipoles)
 - Elapsed time 31 h 32 min (ONE TIME for a given model)
 - ~16GB storage

Non-Accelerated approach

0.05 -

-0.05 -

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

0.2

-0.1

-0.2

0

Full wave EM Integral Equation Solver

114

MRGF-based acceleration

MRGF

Accelerated Full wave EM Integral Equation Solver

MRGF-based acceleration

MRGF

Accelerated Full wave EM Integral Equation Solver

MRGF-based acceleration

To summarize...

- By applying MRI customized simulation tools
 - Domain decomposition and Integral Equation solvers
 - Slow Off-Line stage model pre-computation
 - Can be done for multiple models and frequencies
 - Fast **On-Line** stage model use
- we can analyze a wide variety of coil array designs
 - S-parameter matrix (with body)
 - Body E and B field distribution
 - within minutes
- Enable technology for optimal coil design?

Some references and Support

l'liī

• J. Fernández Villena et al,

"Fast Electromagnetic Analysis of MRI Transmit RF Coils based on Accelerated Integral Equation Methods", submitted to Physics in Medicine and Biology.

• A. Hochman et al,

"Reduced-Order Models for Electromagnetic Scattering Problems", IEEE Transactions on Antennas and Propagation, 2014

 A. Polimeridis et al, "Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects", Journal of Computational Physics, 2014.

• SUPPORT:

- MIT Skoltech initiative
- National Institute of Health
- National Swiss Foundation
- Contact: jvillena@mit.edu http://web.mit.edu/jvillena/www