

# Modeling and Optimal Design of dipole and sextupole electromagnets for particle accelerators within the FAIR project

## PhDs Eng. DAN Daniel

dan@lmn.pub.ro

http://www.lmn.pub.ro/ppl\_dan.html

Numerical Modelling Laboratory

March 19-20, 2015





### FAIR project

Magnets

FAIR project Magnets

### What is FAIR?

### Facility for Antiproton and Ion Research





UPB 🗐

The FAIR complex





DAN Daniel

March 19-20, 2015

EU-Mornet Working Group 2 Meeting



### Parties involved

### in the FAIR project



Figure: The parties involved

### ...and in my professional training



Figure: The parties involved



# Sextupole and Steerer

Magnets

- 66 Sextupoles;
- 53 Steerer magnets (horizontal and vertical)







Figure: The magnets

#### FAIR project Magnets

### Magnets



### Parameters of the Sextupole and Steerer Vertical

| Max deflection angle            | 2mrad at p <sub>max</sub> |                       |
|---------------------------------|---------------------------|-----------------------|
| Aperture (diameter)             | 100mm                     | 140mm                 |
| Magnetic length                 | 300mm                     | 300mm                 |
| Iron yoke length                | 270mm                     | 270mm                 |
| Iron yoke width                 | 580mm                     | 450mm                 |
| Iron yoke height                | 450mm                     | 450mm                 |
| Mass of iron (magnetic circuit) | pprox 160kg               | pprox 160kg           |
| Number of coils                 | 2                         | 6                     |
| Windings / coil                 | 44                        | 15                    |
| Layers / coil                   | 4                         | 2                     |
| Windings / layer                | 11mm                      | 7.5mm                 |
| Conductor dimensions            | $10.6 	imes 7 mm^2$       | $10.6 	imes 7 mm^2$   |
| Cooling bore                    | 4mm                       | 4mm                   |
| Cooper crossection              | 66.77mm <sup>2</sup>      | 66.77mm <sup>2</sup>  |
| Length of conductor /coil       | pprox 72m                 | pprox 12m             |
| Cooper mass /coil               | pprox 39kg                | pprox 6.5kg           |
| Current                         | 304.1A                    | 290A                  |
| Current density                 | 5A/mm <sup>2</sup>        | 4.77A/mm <sup>2</sup> |
| Total mass                      | pprox 350kg               | pprox 220kg           |
| Voltage (DC)                    | 12.84V                    | 6.12V                 |
| Resistance                      | 42.2mΩ                    | 21.12mΩ               |
| Inductivity                     | 0.28mH                    | 3.4mH                 |
| Power (DC)                      | 3.9kW                     | 1.8kW                 |



### Steerer magnet

### Magnetic pole shape optimization



Figure: 3D SolidWorks model of the horizontal Steerer magnet (up - left). Cross section of the Steerer horizontal magnet (up - right). 1/4 of the cross section - Quadrant I



#### The ideal pole shape and the good field region

For normal field, we have the equation for ideal (infinite) poles  $y = \pm d/2$ .





Local homogeneity curve (LHC) of the field along the x-axis:

$$f_1(x) = \frac{\Delta B}{B_0}(x) = \frac{B(x, y) - B_0}{B_0}.$$
 (1)

Horizontal measurement width means width of good field region. The good field region is defined at radius:  $R_{goodfield} = 33mm$ . UPB 🔵



### Steerer magnet

### Magnetic pole shape optimization

### Geometric model. Modelling hypotheses.



Figure: Cross section of the Steerer horizontal magnet with the poles shape optimization.



#### Figure: First magnetization curve

### UPB Θ

### Magnetic pole shape optimization

#### Mathematical model

For this problem we have the equations of the magnetostatic regime with currents:

• Gauss's law for magnetism:

$$\nabla \mathbf{B} = \mathbf{0},\tag{2}$$

where  $\mathbf{B}(x, y) = \mathbf{i}B_x(x, y) + \mathbf{j}B_y(x, y)$  is the magnetic flux density, with  $\mathbf{B}: \Omega \to \mathbb{R}^2$ .

• Ampère's circuital law:

$$\nabla \times \mathbf{H} = \mathbf{J}; \tag{3}$$

where  $\mathbf{H} : \Omega \to \mathbb{R}^2$  is magnetic field strength, and  $\mathbf{J}(x, y) = \mathbf{k}J(x, y)$  is the current density, with  $J : \Omega \to \mathbb{R}$ 

• The definition (not constitutive relations) of the auxiliary field is:

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H},\tag{4}$$

where  $\mu_0=4\pi 10^{-7} \rm NA^{-1}$  is the permeability of free space and  $\mu_r$  is the relative permeability.



#### Mathematical model

Equation (4), allows the definition of magnetic vector potential A(r):

$$\mathbf{B} = \nabla \times \mathbf{A}, \quad \text{with} \quad \nabla \mathbf{A} = \mathbf{0}, \tag{5}$$

Consequently, magnetic vector potential is the solution of elliptic second order partial differential equations:

$$\nabla \times (\nu \nabla \times \mathbf{A}) = \mathbf{J}.$$
 (6)

where  $\nu = 1/\mu$  si the material constant. Also J[0, 0, J(x, y)] and A[0, 0, A(x, y)]. In 2D plan parallel problems we have the Poisson scalar equation:

$$\frac{\partial}{\partial x}\left(\nu\frac{\partial A}{\partial x}\right) + \frac{\partial}{\partial y}\left(\nu\frac{\partial A}{\partial y}\right) = -J,\tag{7}$$

where A(x, y) is non-zero component of magnetic vector potential.

The uniqueness of the solution is given by internal source field (which is the current density), material properties and boundary conditions :

- Dirichlet boundary condition: A × n = 0 ⇒ B · n = 0 on S<sub>B</sub> ∈ ∂Ω;
- Neumann boundary condition:  $\mathbf{H}_t = 0 \Leftrightarrow -dA/dn = B_{rt}$  on  $S_H \in \Omega S_B$ .



#### Numeric approach

Numerical solution was obtained by solving the problem: Find  $A \in H_h$  such that

$$a(A, V) = f(V), \forall V \in H_h.$$
(8)

The expression (8) is weak form of a system of linear equations:

$$\mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{f} = \mathbf{v}^{\mathsf{T}}\mathbf{f} \Rightarrow \mathbf{A}\mathbf{u} = \mathbf{f}, \quad \mathbf{u}, \mathbf{v}, \mathbf{f} \in \mathbb{R}^{N}, \ \mathbf{A} \in \mathbb{R}^{N \times N},$$
 (9)

where:  $\mathbf{A} = [\mathbf{a}(\varphi_j, \varphi_i)]$ ,  $\mathbf{f} = [f(\varphi_j)]$  and  $\mathbf{u} = [u_i^h]$ . The Matrix  $\mathbf{A}$  - symmetric positive definite matrix and rare. Numerical solution:

$$A(x,y) = \mathbf{u}^{T} \varphi = \sum_{k=1}^{N} u_{k} \varphi_{k}(x,y).$$
(10)

UPB 🔵



## UPB 🥘

### Magnetic pole shape optimization

#### Numeric approach

Table: N is the number of triangles (mesh elements), D is number of degrees of freedom, the computation time is t. p is 3rd order Lagrange polynomial

| Variant | Т     | D      | t[s] | р | f <sub>1,max</sub> % |
|---------|-------|--------|------|---|----------------------|
| A       | 56707 | 255460 | 29   | 3 | 0.04                 |
| В       | 56366 | 253927 | 28   | 3 | 0.03                 |
| No shim | 54620 | 27393  | 31   | 3 | 0.20                 |

#### Post processing. Results



Figure: Magnetic flux density distribution map for versions A and B



#### Post processing. Results



Figure: Variation of magnetic flux density vs. x. Local homogeneity curve vs. x

UPB Θ





Figure: 3D model of the sextupole magnet (left). Cross section of the sextupole magnet after the pole shape optimization (center). Cross section of one sixth of the sextupole magnet (right)

#### FAIR project Magnets



### Sextupole magnet

### Magnetic pole shape optimization

### Ideal pole shape and Field quality

The pole shape is described by a hyperbolic equation:  $3x^2y - y^3 = \pm R_{\max}^3$ , with  $R_{\max} = 70$  mm.



Figure: Shapes poles: a) Version  $V_1$  - without shim ; b) Version  $V_2$  - with shim.

The flux density deviations along the boundary of the defined good field region:  $\Delta B/B = \left(B_i - \overline{B}\right)/\overline{B}.$ The good field region: (2/3)  $\cdot d = (2/3) \cdot 140 \cong 93 \text{mm} \Rightarrow \text{R}_{gfr} \cong 46 \text{mm}$ , where d = 140 mm is interpole gap, and R = d/2 is the radius.



### Magnetic pole shape optimization

Two situations:

•  $I_{max} = 290$ A, R = 46mm,  $\theta = 0 \div 90^{0}$  and I = 93A,  $R = 0 \div 48$ mm,  $\theta = 90^{0}$ ;

The geometric modeling. Symmetries



Figure: Cross section of one sixth of the sextupole magnet before the pole shape optimization

**Physical modeling. Description of the problem** The maximum current density is  $J_{max} = 15 \cdot 290/0.001286 = 3.382582e6 \text{A/m}^2$ , where  $I_{max} = 290 \text{A}$ , number of windings is 15, area of the cross section of coil  $A_{Cu} = 0.001286 \text{m}^2$ .



#### The mathematic model

2D parallel plane problem The stationary magnetic field equations:

$$div \mathbf{B} = 0; \quad rot \mathbf{H} = \mathbf{J}; \quad \mathbf{B} = \mathbf{f}(\mathbf{H}), \tag{11}$$

- Magnetic flux density:  $\mathbf{B}(x, y) = \mathbf{i}B_x(x, y) + \mathbf{j}B_y(x, y)$ ,  $\mathbf{B} : \Omega \to \mathbb{R}^2$ ;
- Magnetic field strength:  $\mathbf{H}(x, y) = \mathbf{i}H_x(x, y) + \mathbf{j}H_y(x, y), \mathbf{H} : \Omega \to \mathbb{R}^2$ ;
- Current density:  $\mathbf{J}(x, y) = \mathbf{k}J(x, y), J : \Omega \to \mathbb{R};$
- Magnetization characteristic  $\mathbf{f}(\mathbf{H}) = \mu_0 \mu_r \mathbf{H}$  with  $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ .

Table: Data for first magnetization curve (BH).

| <i>B</i> [T] | 0.12 | 1.45 | 1.70 | 1.80 | 2.0   |
|--------------|------|------|------|------|-------|
| H[A/m]       | 50   | 700  | 4000 | 8000 | 25000 |

Each subdomain will be assumed to be homogeneous, having the same source field in all of its points.

IIPR 🖨

#### The mathematic model

The potential magnetic vector and the Coulomb calibration:

$$\mathbf{B} = \nabla \times \mathbf{A}; \quad \nabla \mathbf{A} = \mathbf{0}. \tag{12}$$

The nonlinear second order differential equation:

$$\nabla \times \mathbf{g} \left( \nabla \times \mathbf{A} \right) = \mathbf{J}; \tag{13}$$

where  $g:\mathbb{R}^2\to\mathbb{R}^2$  is the inverse of f function, presumed as bijective, so that  $f\circ g$  represents the identity function.

The generalized Poisson's equation div-grad type:

$$\nabla \cdot \mathbf{g} \left( \nabla \cdot \mathbf{A} \right) = J \Rightarrow \nabla \cdot \left( \nu \nabla \cdot \mathbf{A} \right) = J_t. \tag{14}$$

with  $\mathbf{A}(x, y) = \mathbf{k}A(x, y), A : \Omega \to \mathbb{R}$ . Boundary conditions:

$$\mathbf{B}_n = \mathbf{n} \cdot \mathbf{B} \Leftrightarrow A = 0 \quad \text{on} \quad S_B \subset \partial \Omega; \tag{15}$$

$$\mathbf{H}_t = 0 \Leftrightarrow -\mathrm{d}A/\mathrm{d}n = B_{rt} \text{ on } S_H = \Omega - S_B.$$
 (16)



### Magnetic pole shape optimization

#### Numerical approach

Table: N is the number of triangles (mesh elements), D is number of degrees of freedom, the computation time is t, B is the magnetic flux density at value R = 46mm and  $\theta = 90^0$ , I = 290A

| Version | Т     | D      | t[s] | B[T]      |
|---------|-------|--------|------|-----------|
| $V_1$   | 35547 | 161695 | 37   | 0.0982967 |
| V2      | 36689 | 166825 | 37   | 0.1024298 |



Figure: Magnetic flux density distribution map for Version  $V_{\rm 1}.$  Magnetic flux density distribution map for Version  $V_{\rm 2}$ 

DAN Daniel



### Magnetic pole shape optimization

#### **Results and conclusions**



 $\ensuremath{\mathsf{Figure:}}$  Variation of magnetic flux density vs. R. Absolute error of the measured and calculated data

The measured magnetic flux density corresponds from the point of view of the maximum values calculated for the value I = 93A of the test current, in the center of the air gap. In second figure the absolute error of the measured and calculated data is plotted. The highest value is  $3.5 \cdot 10^{-3}$ T.



### Magnetic pole shape optimization

#### **Results and conclusions**



Figure: Relative deviation vs.  $\theta$ 

The maximum field deviation for the optimized pole shape is  $1.3 \cdot 10^{-4} \le 4 \cdot 10^{-4}$  within the "good field area" of R = 46mm for B = 0.1024T. Also, the maximum field deviation for the non-optimized pole shape is  $2.2 \cdot 10^{-3} > 4 \cdot 10^{-4}$  within the "good field area" of R = 46mm for B = 0.0983T, where  $4 \cdot 10^{-4}$  is the setpoint.